Exploratory Data Analysis in R: Quick Dive into Data Visualization




[ad_1]

In this video, I continue on the topic of exploratory data analysis and provide a quick dive into data visualization using the R base plot functions.

🌟 Buy me a coffee: https://www.buymeacoffee.com/dataprofessor

β­• Timeline
0:57 Fire up RStudio or RStudio.cloud
1:08 Open Iris-data-understanding.R file
1:14 Load in the Iris dataset
1:32 Scroll to “Quick data visualization”
1:43 Generate panel plot using plot(iris)
2:10 Add the col argument to set color, e.g. plot(iris, col=”red”)
2:57 To make a scatter plot use plot(var1, var2)
3:07 For the Iris dataset use plot(iris$Sepal.Width, iris$Sepal.Length)
3:51 To customize the x-axis label, add the xlab argument
4:40 To construct a histogram for sepal width: hist(iris$Sepal.Width)
5:54 Feature plot shows the Box plots for 4 variables as a function of 3 classes
8:04 Quick recap and next video’s topic

β­• Code:
https://github.com/dataprofessor/code/blob/master/iris/iris-data-understanding.R

Note: Please excuse the spacing error at 1:32 “Quick data visualization”

β­• Playlist:
Check out our other videos in the following playlists.
βœ… Data Science 101: https://bit.ly/dataprofessor-ds101
βœ… Data Science YouTuber Podcast: https://bit.ly/datascience-youtuber-podcast
βœ… Data Science Virtual Internship: https://bit.ly/dataprofessor-internship
βœ… Bioinformatics: http://bit.ly/dataprofessor-bioinformatics
βœ… Data Science Toolbox: https://bit.ly/dataprofessor-datasciencetoolbox
βœ… Streamlit (Web App in Python): https://bit.ly/dataprofessor-streamlit
βœ… Shiny (Web App in R): https://bit.ly/dataprofessor-shiny
βœ… Google Colab Tips and Tricks: https://bit.ly/dataprofessor-google-colab
βœ… Pandas Tips and Tricks: https://bit.ly/dataprofessor-pandas
βœ… Python Data Science Project: https://bit.ly/dataprofessor-python-ds
βœ… R Data Science Project: https://bit.ly/dataprofessor-r-ds

β­• Subscribe:
If you’re new here, it would mean the world to me if you would consider subscribing to this channel.
βœ… Subscribe: https://www.youtube.com/dataprofessor?sub_confirmation=1

β­• Recommended Tools:
Kite is a FREE AI-powered coding assistant that will help you code faster and smarter. The Kite plugin integrates with all the top editors and IDEs to give you smart completions and documentation while you’re typing. I’ve been using Kite and I love it!
βœ… Check out Kite: https://www.kite.com/get-kite/?utm_medium=referral&utm_source=youtube&utm_campaign=dataprofessor&utm_content=description-only

β­• Recommended Books:
βœ… Hands-On Machine Learning with Scikit-Learn : https://amzn.to/3hTKuTt
βœ… Data Science from Scratch : https://amzn.to/3fO0JiZ
βœ… Python Data Science Handbook : https://amzn.to/37Tvf8n
βœ… R for Data Science : https://amzn.to/2YCPcgW
βœ… Artificial Intelligence: The Insights You Need from Harvard Business Review: https://amzn.to/33jTdcv
βœ… AI Superpowers: China, Silicon Valley, and the New World Order: https://amzn.to/3nghGrd

β­• Stock photos, graphics and videos used on this channel:
βœ… https://1.envato.market/c/2346717/628379/4662

β­• Follow us:
βœ… Medium: http://bit.ly/chanin-medium
βœ… FaceBook: http://facebook.com/dataprofessor/
βœ… Website: http://dataprofessor.org/ (Under construction)
βœ… Twitter: https://twitter.com/thedataprof/
βœ… Instagram: https://www.instagram.com/data.professor/
βœ… LinkedIn: https://www.linkedin.com/in/chanin-nantasenamat/
βœ… GitHub 1: https://github.com/dataprofessor/
βœ… GitHub 2: https://github.com/chaninlab/

β­• Disclaimer:
Recommended books and tools are affiliate links that gives me a portion of sales at no cost to you, which will contribute to the improvement of this channel’s contents.

#dataprofessor #rdatascience #exploratorydataanalysis #datascienceproject #r #rtutorial #rworkshop #learnr #rprogramming #learnrprogramming #rcode #rstudio #rstudiocloud #datascience #datamining #bigdata #machinelearning #datascienceworkshop #dataminingworkshop #dataminingtutorial #datasciencetutorial #ai #artificialintelligence

Source


[ad_2]

Comment List

  • Data Professor
    December 14, 2020

    QUESTION OF THE DAY: Instead of specifying the color argument as col = 'red' what would happen if we use col = iris$Species ❓
    Try it and comment down below! πŸ˜ƒ

  • Data Professor
    December 14, 2020

    Amazing content….Please interpret the first pair plot,the big one. What does that represent.

  • Data Professor
    December 14, 2020

    I need to do install.packages to run featurePlot, otherwise it showed an error.

  • Data Professor
    December 14, 2020

    how can fix this error
    Error in plot.window(…) : need finite 'ylim' values

    In addition: Warning messages:

    1: In xy.coords(x, y, xlabel, ylabel, log) : NAs introduced by coercion

    2: In min(x) : no non-missing arguments to min; returning Inf

    3: In max(x) : no non-missing arguments to max; returning -Inf
    when we plotting the iris data set ?

  • Data Professor
    December 14, 2020

    Nice explanation

  • Data Professor
    December 14, 2020

    Need these videos with python implementation !!!!

  • Data Professor
    December 14, 2020

    Amazing content! Even if you already know the stuff it's good to refresh or get some additional tricks πŸ™‚

Write a comment