Exploratory Data Analysis in R: Quick Dive into Data Visualization
[ad_1]
In this video, I continue on the topic of exploratory data analysis and provide a quick dive into data visualization using the R base plot functions.
π Buy me a coffee: https://www.buymeacoffee.com/dataprofessor
β Timeline
0:57 Fire up RStudio or RStudio.cloud
1:08 Open Iris-data-understanding.R file
1:14 Load in the Iris dataset
1:32 Scroll to “Quick data visualization”
1:43 Generate panel plot using plot(iris)
2:10 Add the col argument to set color, e.g. plot(iris, col=”red”)
2:57 To make a scatter plot use plot(var1, var2)
3:07 For the Iris dataset use plot(iris$Sepal.Width, iris$Sepal.Length)
3:51 To customize the x-axis label, add the xlab argument
4:40 To construct a histogram for sepal width: hist(iris$Sepal.Width)
5:54 Feature plot shows the Box plots for 4 variables as a function of 3 classes
8:04 Quick recap and next video’s topic
β Code:
https://github.com/dataprofessor/code/blob/master/iris/iris-data-understanding.R
Note: Please excuse the spacing error at 1:32 “Quick data visualization”
β Playlist:
Check out our other videos in the following playlists.
β
Data Science 101: https://bit.ly/dataprofessor-ds101
β
Data Science YouTuber Podcast: https://bit.ly/datascience-youtuber-podcast
β
Data Science Virtual Internship: https://bit.ly/dataprofessor-internship
β
Bioinformatics: http://bit.ly/dataprofessor-bioinformatics
β
Data Science Toolbox: https://bit.ly/dataprofessor-datasciencetoolbox
β
Streamlit (Web App in Python): https://bit.ly/dataprofessor-streamlit
β
Shiny (Web App in R): https://bit.ly/dataprofessor-shiny
β
Google Colab Tips and Tricks: https://bit.ly/dataprofessor-google-colab
β
Pandas Tips and Tricks: https://bit.ly/dataprofessor-pandas
β
Python Data Science Project: https://bit.ly/dataprofessor-python-ds
β
R Data Science Project: https://bit.ly/dataprofessor-r-ds
β Subscribe:
If you’re new here, it would mean the world to me if you would consider subscribing to this channel.
β
Subscribe: https://www.youtube.com/dataprofessor?sub_confirmation=1
β Recommended Tools:
Kite is a FREE AI-powered coding assistant that will help you code faster and smarter. The Kite plugin integrates with all the top editors and IDEs to give you smart completions and documentation while youβre typing. I’ve been using Kite and I love it!
β
Check out Kite: https://www.kite.com/get-kite/?utm_medium=referral&utm_source=youtube&utm_campaign=dataprofessor&utm_content=description-only
β Recommended Books:
β
Hands-On Machine Learning with Scikit-Learn : https://amzn.to/3hTKuTt
β
Data Science from Scratch : https://amzn.to/3fO0JiZ
β
Python Data Science Handbook : https://amzn.to/37Tvf8n
β
R for Data Science : https://amzn.to/2YCPcgW
β
Artificial Intelligence: The Insights You Need from Harvard Business Review: https://amzn.to/33jTdcv
β
AI Superpowers: China, Silicon Valley, and the New World Order: https://amzn.to/3nghGrd
β Stock photos, graphics and videos used on this channel:
β
https://1.envato.market/c/2346717/628379/4662
β Follow us:
β
Medium: http://bit.ly/chanin-medium
β
FaceBook: http://facebook.com/dataprofessor/
β
Website: http://dataprofessor.org/ (Under construction)
β
Twitter: https://twitter.com/thedataprof/
β
Instagram: https://www.instagram.com/data.professor/
β
LinkedIn: https://www.linkedin.com/in/chanin-nantasenamat/
β
GitHub 1: https://github.com/dataprofessor/
β
GitHub 2: https://github.com/chaninlab/
β Disclaimer:
Recommended books and tools are affiliate links that gives me a portion of sales at no cost to you, which will contribute to the improvement of this channel’s contents.
#dataprofessor #rdatascience #exploratorydataanalysis #datascienceproject #r #rtutorial #rworkshop #learnr #rprogramming #learnrprogramming #rcode #rstudio #rstudiocloud #datascience #datamining #bigdata #machinelearning #datascienceworkshop #dataminingworkshop #dataminingtutorial #datasciencetutorial #ai #artificialintelligence
Source
[ad_2]
QUESTION OF THE DAY: Instead of specifying the color argument as col = 'red' what would happen if we use col = iris$Species β
Try it and comment down below! π
Amazing content….Please interpret the first pair plot,the big one. What does that represent.
I need to do install.packages to run featurePlot, otherwise it showed an error.
how can fix this error
Error in plot.window(…) : need finite 'ylim' values
In addition: Warning messages:
1: In xy.coords(x, y, xlabel, ylabel, log) : NAs introduced by coercion
2: In min(x) : no non-missing arguments to min; returning Inf
3: In max(x) : no non-missing arguments to max; returning -Inf
when we plotting the iris data set ?
Nice explanation
Need these videos with python implementation !!!!
Amazing content! Even if you already know the stuff it's good to refresh or get some additional tricks π