Exploratory Data Analysis in R: Quick Dive into Data Visualization

In this video, I continue on the topic of exploratory data analysis and provide a quick dive into data visualization using the R base plot functions.

β­ Timeline
0:57 Fire up RStudio or RStudio.cloud
1:08 Open Iris-data-understanding.R file
1:14 Load in the Iris dataset
1:32 Scroll to “Quick data visualization”
1:43 Generate panel plot using plot(iris)
2:10 Add the col argument to set color, e.g. plot(iris, col=”red”)
2:57 To make a scatter plot use plot(var1, var2)
3:07 For the Iris dataset use plot(iris\$Sepal.Width, iris\$Sepal.Length)
3:51 To customize the x-axis label, add the xlab argument
4:40 To construct a histogram for sepal width: hist(iris\$Sepal.Width)
5:54 Feature plot shows the Box plots for 4 variables as a function of 3 classes
8:04 Quick recap and next video’s topic

Note: Please excuse the spacing error at 1:32 “Quick data visualization”

β­ Playlist:
Check out our other videos in the following playlists.
β Data Science 101: https://bit.ly/dataprofessor-ds101
β Data Science Virtual Internship: https://bit.ly/dataprofessor-internship
β Bioinformatics: http://bit.ly/dataprofessor-bioinformatics
β Data Science Toolbox: https://bit.ly/dataprofessor-datasciencetoolbox
β Streamlit (Web App in Python): https://bit.ly/dataprofessor-streamlit
β Shiny (Web App in R): https://bit.ly/dataprofessor-shiny
β Pandas Tips and Tricks: https://bit.ly/dataprofessor-pandas
β Python Data Science Project: https://bit.ly/dataprofessor-python-ds
β R Data Science Project: https://bit.ly/dataprofessor-r-ds

β­ Subscribe:
If you’re new here, it would mean the world to me if you would consider subscribing to this channel.

β­ Recommended Tools:
Kite is a FREE AI-powered coding assistant that will help you code faster and smarter. The Kite plugin integrates with all the top editors and IDEs to give you smart completions and documentation while youβre typing. I’ve been using Kite and I love it!

β­ Recommended Books:
β Hands-On Machine Learning with Scikit-Learn : https://amzn.to/3hTKuTt
β Data Science from Scratch : https://amzn.to/3fO0JiZ
β Python Data Science Handbook : https://amzn.to/37Tvf8n
β R for Data Science : https://amzn.to/2YCPcgW
β Artificial Intelligence: The Insights You Need from Harvard Business Review: https://amzn.to/33jTdcv
β AI Superpowers: China, Silicon Valley, and the New World Order: https://amzn.to/3nghGrd

β­ Stock photos, graphics and videos used on this channel:
β https://1.envato.market/c/2346717/628379/4662

β Medium: http://bit.ly/chanin-medium
β Website: http://dataprofessor.org/ (Under construction)
β Instagram: https://www.instagram.com/data.professor/
β GitHub 1: https://github.com/dataprofessor/
β GitHub 2: https://github.com/chaninlab/

β­ Disclaimer:
Recommended books and tools are affiliate links that gives me a portion of sales at no cost to you, which will contribute to the improvement of this channel’s contents.

#dataprofessor #rdatascience #exploratorydataanalysis #datascienceproject #r #rtutorial #rworkshop #learnr #rprogramming #learnrprogramming #rcode #rstudio #rstudiocloud #datascience #datamining #bigdata #machinelearning #datascienceworkshop #dataminingworkshop #dataminingtutorial #datasciencetutorial #ai #artificialintelligence

Source

Comment List

• Data Professor
December 14, 2020

QUESTION OF THE DAY: Instead of specifying the color argument as col = 'red' what would happen if we use col = iris\$Species β
Try it and comment down below! π

• Data Professor
December 14, 2020

Amazing content….Please interpret the first pair plot,the big one. What does that represent.

• Data Professor
December 14, 2020

I need to do install.packages to run featurePlot, otherwise it showed an error.

• Data Professor
December 14, 2020

how can fix this error
Error in plot.window(…) : need finite 'ylim' values

1: In xy.coords(x, y, xlabel, ylabel, log) : NAs introduced by coercion

2: In min(x) : no non-missing arguments to min; returning Inf

3: In max(x) : no non-missing arguments to max; returning -Inf
when we plotting the iris data set ?

• Data Professor
December 14, 2020

Nice explanation

• Data Professor
December 14, 2020

Need these videos with python implementation !!!!

• Data Professor
December 14, 2020

Amazing content! Even if you already know the stuff it's good to refresh or get some additional tricks π