Stephen Elston – Data Visualization and Exploration with Python


Visualization is an essential method in any data scientist’s toolbox and is a key data exploration method and is a powerful tool for presentation of results and understanding problems with analytics. Attendees are introduced to Python visualization packages, Matplotlib, Pandas, and Seaborn. The Jupyter notebook can be downloaded at

Visualization of complex real-world datasets presents a number of challenges to data scientists. By developing skills in data visualization, data scientists can confidently explore and understand the relationships in complex data sets. Using the Python matplotlib, pandas plotting and seaborn packages attendees will learn to: • Explore complex data sets with visualization, to develop understanding of the inherent relationships. • Create multiple views of data to highlight different aspects of the inherent relationships, with different graph types. • Use plot aesthetics to project multiple dimensions. • Apply conditioning or faceting methods to project multiple dimensions

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.



Write a comment